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Abstract Many future earth and space science missions, such as 
the Magnetospheric Multiscale Mission and Terrestrial Planet 
Finder, have been proposed that require a high level of 
coordination between multiple heterogeneous sensors and 
spacecraft to achieve their mission objectives. On-board 
autonomy and distributed processing are additional key 
technologies that can improve the fidelity and quality of the 
missions' data products while reducing the associated ground 
support. This paper will present the development of an agent-
based software architecture for real-time embedded systems 
that provides a flexible, reconfigurable framework to support 
these technologies. 

A. INTRODUCTION 

Satellite formations are a key element of the Earth-Sun 
System enterprise’s strategic plan for future space and earth 
science missions. Among the important themes proposed by 
the Advanced Information Systems Technology (AIST) 
program is the deployment of missions comprised of multiple 
autonomous spacecraft that use a distributed, agent-based 
architecture. Furthermore, it is prudent for implementations 
of such architectures to leverage mature terrestrial standards, 
e.g. TCP/IP, to reduce development and validation costs. The 
potential benefits of these resulting systems are multifold; 
autonomy leads not only to flexibility and system robustness, 
but more importantly it can reduce the life-cycle cost for both 
the space and ground elements. 
 

To help realize this vision, we are developing the Adaptive 
Network Architecture (ANA) composed of a set of 
heterogeneous software agents that interact and collaborate 
through message-based communication. The ANA is 
fundamentally responsible for ensuring that mission 
objectives are met by autonomously responding in real-time 
to both environmental events and ground user requests for (i) 
the optimal allocation of computing and communication 
resources; (ii) instrument reconfiguration as part of either 
current mission needs or fault management; and (iii) 
distributed science processing and data aggregation. The goal 
is to provide an integrated solution for all spacecraft 
formation operations that would allow ground users to 
operate a distributed aperture sensor or cluster as if it were a 
single instrument. 
 

Section B will present an overview of the software 
architecture, common agent functionality, and 
communication schemes composing the ANA. A detailed 
description of the various agents comprised in the ANA will 
be provided in Section C, followed by an example mission 
implementation in Section D. Finally, a discussion of future 

work and some concluding remarks will be presented in 
Sections E and F, respectively.   

B. ARCHITECTURE OVERVIEW 

The ANA is based upon the concept of software agents. 
Many diverse definitions for software agents can be found in 
the literature [1], however we will define an agent to be a 
software entity that has the characteristics of communication, 
autonomy, and collaboration. The ability to communicate is 
relatively self-explanatory, while the characteristics of 
autonomy and collaboration require clarification. By 
autonomy, we mean that the agent is able to make 
independent decisions in support of its internal goals without 
direct operator intervention (although this does not 
necessarily apply to all decisions). Collaboration means that 
each agent must be able to interact and negotiate with other 
agents in order to achieve its goals. 
 

The ANA distributes the responsibility for different aspects 
of a science mission between several component agent types. 
A schematic of the ANA agents and supporting services is 
shown in Fig. 1. Each agent type shown has its own tasks to 
perform, while more complex processes are achieved through 
interactions and collaborations of multiple agents. The ANA 
provides additional flexibility by allowing different 
configurations of agents to be instantiated at system 
initialization or runtime, depending on the desired 
functionality. By default, the Executive and Computing 
Agents are singletons required on all hosts. However, subsets 
of the other agents can be created depending on the specific 
host’s hardware, mission objectives, and available computing 
resources. A typical system running the ANA would consist 
of (i) multiple hosts and (ii) multiple instruments/payloads 
either on a single or multiple spacecraft. 

C. AGENT ANATOMY 

The characteristics described above cover the basic 
functionality that we require from each agent, however the 
anatomy of an agent can be broken down into three main 
components: inter-agent communication, basic agent 
functions, and the role/responsibilities of the specific agent 
types. 

C.1 Inter-Agent Communication 

As mentioned above, a message-based scheme is used for 
inter-agent communication. The Common Object Request 
Broker Architecture (CORBA) [2] standard is an inherent 
part of the ANA communication structure to enable 
transparent cross-platform interoperability (network type, 



 

 

programming language, operating system) and leverage 
existing terrestrial standards. The ANA is built using the 
open-source ADAPTIVE Communications Environment 
(ACE) and The ACE ORB (TAO) [3]. ACE/TAO is an ideal 
choice for several salient reasons: 

• Rich use of software design patterns makes it both 
robust and flexible 

• Real-time extensions for many standard CORBA 
Services 

• A world-wide user community that continually 
infuses it with improvements 

It should be noted that while we have chosen C++ as our 
implementation language, ACE/TAO directly supports 
programming in C/C++ and Java (ZEN). 
 

The ANA message format is based on the standard 
developed by the Foundation for Intelligent Physical Agents 
(FIPA) for Agent Communication Languages (ACL) [4]. The 
description of an ANA Message in CORBA Interface 
Definition Language (IDL) is shown in Table 1. A subset of 
the message performatives and message fields were chosen 
for simplicity, however it can easily be extended to support 
the full FIPA specification. The first three fields are the 

names of the sender, receiver, and the receiver of any replies. 
Next is the timestamp of message transmission, along with a 
globally unique conversation identifier that allows agents to 
relate a message to a specific conversation. The header of the 
message is a performative that describes the type of message, 
and the last field is a sequence of the message payload data. 
The particular meaning of a given message is specific to each 
agent type’s inner language, and naturally two agents must 
both comprehend a common language to converse. 
 

Two CORBA services - the Notification Service and an 
extended Event Service - are currently used by the ANA to 
provide messaging support. The use of these services 
depends on whether the conversing agents are collocated i.e. 
on a single host or distributed i.e. resident on multiple hosts 
on a spacecraft or multiple spacecrafts. Local inter-agent 
communication relies on the Notification Service to deliver 
ANA Messages via structured events [5]. The Notification 
service was chosen because of its flexible event structure and 
advanced filtering, however it does not currently provide an 
inherent means of passing events between agents located on 
different processors. The ANA uses the TAO Real Time 
Event (RTEC) Service to handle such remote 
communications. More specifically, a federated RTEC is 
implemented to transparently connect the ANA agents that 
are not collocated. Although the RTEC can be distributed 
through federation, the simplicity of the real-time events 
constrains the event filtering possibilities. A schematic 
representation of the communication architecture is also 
shown in Fig. 1. 
 

TAO’s primary developer, the Distributed Object 
Computing (DOC) group – now part of the Institute of 
Software Integrated Systems (ISIS) at Vanderbilt University 
- is our team member for this research, and is currently 
enhancing the TAO Notification Service to be federated. 
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Fig. 1: Schematic of the Adaptive Network Architecture 

Table 1: ANA Message IDL 

 
// Subset of FIPA Message Performatives 
enum Performative 
{ 
 REQUEST, 
 INFORM, 
 AGREE, 
 REFUSE, 
 NOTUNDERSTOOD 
}; 
 
// Modified FIPA ACL message structure 
struct Message 
{ 
 string sender; 
 string receiver; 
 string reply_to; 
 long time_stamp; 
 string conversation_id; 
 
 Performative header; 
 sequence<any> content; 
}; 



 

 

With this added capability, the RTEC will soon be phased 
out, resulting in a simpler, more robust architecture. 

C.2 Base Agent Functionality 

Each agent supports a basic level of functionality common 
across all agent types, such as messaging, health reporting, 
and telemetry handling. These fundamental capabilities are 
provided for each specific agent through inheritance from a 
parent ‘BaseAgent’ class. 

 
To give insight into the common functionality support, the 

BaseAgent interface definition in CORBA IDL is shown in 
Table 2. First, all agents are identified by an agent type and a 
unique name, which describes the specific agent, host 
processor, and physical location where the agent is running. 
During instantiation, each agent binds itself with the Naming 
Service that currently runs on the ground station. This allows 
agents to locate each other based on the naming scheme we 
have designed. 

 

All agents can be in one of two states, dozing or awake. 
While in the dozing state, the agent’s acceptance of messages 
and most internal processes are suspended. Generally, all 
agents are instantiated in the dozing state and must be 
explicitly commanded to awake. This capability of ‘job 
control’ for an agent is provided by the Doze() and Wakeup() 
interface calls.  

 
All agents must report their health via heartbeats to a 

designated agent at the specified HeartBeatRate. A heartbeat 
message has an INFORM performative with the ‘HeartBeat’ 
structure as content. Once an agent is instantiated and sent an 
initial Wakeup() call, the heartbeat messages are sent via the 
Notification Service independent of the agent’s subsequent 
operational state. 

C.3 Agent Roles and Responsibilities 

The roles and responsibilities for different aspects of a 
distributed science mission are divided between several types 
of component agents. The agent types currently implemented 
are further subdivided into a subset that run on a spacecraft 
(the “space” set) consisting of the Executive, 
Communication, Science, Computing, and Gizmo Agents, 
and another subset that resides on a ground station (the 
“ground” set) consisting of a User Interface Agent. Each 
agent type will be briefly described below. 

C.3.1 Executive Agent 

An Executive agent manages all agents on a single host, 
including creation, state change, and health monitoring. 
Continuing enhancements to the Executive Agent will 
include the management of faults and system security 
policies.  

C.3.2 Communication Agent 

The Communication Agent manages various aspects of 
communication on a given host. This will entail management 
of the communication hardware, communication services, as 
well as the types and frequency of transmitted data. To 
reduce system complexity, we have designed the 
Communication Agent to be solely responsible for routing 
telemetry to the ground. All agents in the space set format 
their own unique telemetry as part of their heartbeat 
processing, then transmit it to the Communication Agent as 
an INFORM message. The individual messages are re-
assembled by the Communication Agent into a single 
telemetry stream before being sent to the User Interface 
agent. 
 

The telemetry system is designed to be extremely flexible. 
As is typical of spacecraft, each telemetry item is codified 
with a unique identifier – its measurand ID.  Based on the 
operational environment, at any given time, each agent is free 
to format and transmit selected items with no constraint on 
either the number of items or the length of each item. Thus 
the contents of the telemetry stream are dynamically variable. 

Table 2: ANA BaseAgent IDL 

// Agent types 
enum AgentClasses 
{ 
 EXEC, // Executive 
 COMM, // Communication 
 COMP, // Computing 
 GIZMO, // Generic Gizmo 
 SCIENCE, 
 USERINTERFACE 
}; 
 
// Agent states 
enum StateType 
{ 
 AWAKE, 
 DOZING 
}; 
 
// Heartbeat information 
struct HeartBeat 
{ 
 string sender; 
 StateType CurrentState; 
}; 
 
// Standardized agent interface 
interface BaseAgent 
{ 
 readonly attribute AgentClasses AgentType; 
 attribute string AgentName; 
 
 readonly attribute StateType ActivityState; 
 //Request agent becomes dormant 
 boolean Doze(); 
 //Request agent becomes active 
 void Wakeup(); 
 
 attribute float HeartBeatRate; 
  
 //Process incoming message 
 void ProcessMessage(); 
}; 



 

 

C.3.3 Science Agent 

Each Science Agent contains the logic associated with 
achieving a specific science objective, and the numerical 
processing generating the desired data products. The data 
processing is constructed as a set of concurrent streams that 
apply a sequential series of algorithms to the input data. The 
output data products can then be redirected to other Science 
Agents or User Interface Agents as specified in the mission 
logic. 

C.3.4 Computing Agent 

One agent type that directly supports the Science Agents’ 
tasks is the Computing Agent. The Computing Agent 
manages the computing resources, in terms of CPU 
utilization, memory usage, and network throughput, for a for 
the science processing conducted on a single processor. This 
management is used to ensure efficient resource utilization 
and real-time delivery of data products. Currently, the 
Computing Agent performs only resource monitoring, 
however a purely distributed negotiation protocol for 
requesting remote computing resources has been 
implemented to handle the resource allocation. 
 

C.3.5 Gizmo Agent 

The Gizmo Agent, was developed to manage interaction 
and conflict resolution for accessing “negotiable” physical 
devices, such as payload sensors. The Gizmo Agent is an 
abstract parent class that presents a publish/subscribe 
protocol for other agents to subscribe to data updates based 
on data type, sampling rate, subscription duration, and 
priority. Conflicting subscriptions are resolved by a priority 
based scheduler. Direct interaction with each type of physical 
device will be handled by a specific agent class that inherits 
from the ‘Gizmo Agent’ base class, and contains the device-
specific interface code. A concrete realization of a Gizmo 
agent has been implemented for a ‘Smart’ Camera 
commercially developed by Carnegie Mellon University 
(CMU) [6].  

C.3.6 User Interface Agent 

Finally, the User Interface Agent provides a unified means 
for both autonomous interaction and manual ground user 
interaction with the space set ANA agents. At present, it 
provides visibility into those agents that have registered with 
the Naming Service and for the processing, display, and 
recording of telemetry transmitted from the space segment.  

D. EXAMPLE SCIENCE MISSION: GAMMA RAY BURST 
DETECTION 

Although each agent has a particular role to play in the 
ANA, they seldom work in isolation. Interaction between 
multiple agents is necessary to complete complex, higher 
level tasks. This section will illustrate some of these 
interactions within the context of an example science mission 
involving the detection of gamma ray bursts. For brevity, this 

description focuses on the data acquisition process involving 
the Science and Gizmo Agents; however the full mission 
includes distributed onboard processing of images (e.g. 
compression) and the telemetry downlink. 
 

The goal of the example science mission is to detect and 
capture images of a transient gamma ray burst event.  The 
physical system consists of a single smart camera as a 
payload sensor, a single processing host, and a ground 
station. A schematic of the experimental system is shown in 
Fig. 2. 
 

The smart camera can operate in two mutually exclusive 
modes: a color tracking mode and an image capture mode. In 
the color tracking mode, the smart camera’s onboard 
processor finds the centroid of all pixels within an apriori 
specified RGB color range at a rate of 17Hz. Single frames 
can be captured by the camera at a slower rate of 1Hz in the 
image capture mode. 
 

Given our hardware configuration, the mission objectives 
are best served by switching between the two camera modes 
to ensure 

• Rapid detection of a burst (via the color tracking 
mode) 

• Increased data collection during a burst (via the 
image capture mode) 

 
The logic for this mission can be captured in the interaction 

diagram shown in Fig. 3. 
 

After initialization, the Science Agent subscribes to the 
Smart Camera Agent (a child of the Gizmo Agent class) to 
receive color tracking data at the maximum sampling rate. 
The Smart Camera Agent receives the SUBSCRIBE message, 
schedules the subscription request, and sets the current 
camera mode to the appropriate mode. As the smart camera 
takes samples, they are encapsulated in INFORM messages 
that are sent to the subscribing Science Agent. Once a burst is 
detected (i.e. a nontrivial centroid is sent to the Science 
Agent), the Science Agent changes its subscription by 
requesting a single image frame by sending a new 
SUBSCRIBE message with high priority. The Gizmo Agent 
then reschedules the highest priority request (i.e. the image 
capture subscription), and sets the new mode of the camera. 
Once the image is captured, it is also sent to the Science 
Agent via an INFORM message for further processing and 
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Fig. 2: Schematic of the experimental setup for the example science mission 



 

 

downlink to the ground station. Subsequently, the Gizmo 
Agent reschedules the subscriptions again, returning to the 
color tracking mode. This cycle repeats throughout the 
duration of the mission. 

E. FUTURE WORK 

 
The near-term target of the ANA is deployment and 

verification on a hardware testbed containing a set of 
heterogeneous computing platforms with heterogeneous 
connectivity termed the Formation Computing Environment 
(FCE).  The FCE is an integral part of our Distributed 
Systems Laboratory (DSL).  Other assets that will come into 
play for system demonstration are two classes of air-bearing 
robots termed picoBots and microBots to simulate small 
spacecraft and their formations, shown in Fig. 4.  At present, 
we are developing and verifying the ANA on two different 

embedded PC/104 processing hosts (i.e. stacks) – an X-86 
Pentium III and PowerPC (MIP405) PC/104, as well as a 
simulated ground station – a X-86 Pentium IV workstation.  
In order to satisfy hard real-time constraints of functions such 
as spacecraft GNC, we run the ANA under the WindRiver 
Tornado/VxWorks operating system on the Pentium III 
processor.  For science processing, the PowerPC processor 
runs a small footprint GNU/Linux OS with RTAI real-time 
extensions for both “soft” real-time and non real-time 
processing.  The ground station runs Windows. Fig. 5 is a 
schematic showing the processor types, their roles, and the 
end-to-end connectivity.  Both the Pentium III and PowerPC 
platforms can be mounted on a microBot to represent the 
spacecraft and payload subsystems respectively.  The 
workstation represents ground mission control.  Multiple 
picoBots and microBots will be configured to represent 
formations of heterogeneous spacecraft. 

 
Since the inception of Phase I of this program, we have 

made significant progress in the design and the 
implementation of the infrastructure, particularly with regard 
to the inter-agent communication. Extensive work yet 
remains to provide the agents with the full capacity to exhibit 
intelligent, adaptive behavior in order to meet mission 
objectives. While such development will continue to evolve 
incrementally over the next several years, much of the 1 year 
Phase II will be devoted to incorporating additional 
functionality for fault detection and recovery, improved 
resource utilization, and mission planning. The space set 
agents will, under the direction of the Executive Agent, detect 
and respond to faults via autonomous macro (at the spacecraft 
formation level) and micro (on a subsystem or lower level) 
reconfiguration. Further additions of a Mission Operations 
Agent and a Science Operations Agent will greatly enhance 
the computational and autonomous decision making capacity 
of the system as a whole. Initial verification of the latter will 
take place by infusing these agents into the ground set. With 
continued development, transfer of this capability to the 
space set will lead to a progressively more autonomous 
system. 
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Fig. 3: Science Mission Interaction Diagram 
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Fig. 5: Schematic of the Formation Computing Environment including 

processor type, role, and connectivity 

 
Fig. 4: Robotic assets of the Distributed Systems Laboratory 



 

 

For increased flexibility, we will transition from using the 
CORBA Naming Service to the CORBA Trading Service, 
(akin to a “yellow pages”) as the Agent locator. This will free 
us from an unnecessarily constrained scheme of finding 
agents via name only. All agents will publish known 
capabilities in addition to names as a means of determining 
location. In addition, the Trading Service provides the 
capability to automatically notify subscribed agents of 
changes to its data base resulting from either departing or 
newly joined agents. 

 
To help complete the full ANA suite, a Navigation Agent 

will be added to the space set. This will handle the Guidance 
Navigation and Control functions of a spacecraft as well as 
the higher-level constellation formation and maintenance.  
 

F.  CONCLUSIONS 

Agent technology is now an established paradigm for 
developing large complex software systems across many 
varied domains, where autonomy and intelligence are 
common central important themes. The ANA follows in the 
tradition of multi-agent systems such as OASIS [7] deployed 
and tested at the Sydney Airport, and the Remote Agent 
Experiment flown on the NASA Deep Space 1 mission [8]. In 
extending the capabilities of these predecessor systems, it 
will be well poised to support and handle not only complex 
space based science missions of heterogeneous makeup, but 
also other large distributed systems that comprise missions 
such as NASA’s Space Exploration Initiative.  
 

We have successfully built the ANA over mature terrestrial 
standards that will provide the same seamless operational 
functionality to future missions with components distributed 
both in space and ground. Improvements to these standards as 
a result of this technology development are already beginning 
to emerge e.g. performance optimizations and a significantly 
reduced footprint make TAO even more feasible for use in 

resource constrained real-time embedded systems.  This work 
has provided similar impetus for extending the capability of 
the CORBA Notification Service to operate as a federation 
with multiple options to configure the federation based on 
available resources and mission specific needs. 

 
We look forward to verifying the versatility and usefulness 

of this technology on future earth, space, and planetary 
missions. We are confident that it will come to represent an 
important component of systems constructed to meet the 
objectives of these missions. 
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